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Abstract

The hyperbolic heat conduction in a solid bar with a rectangular section is analyzed. Each surface of the bar is
subjected to a uniform and time varying heat flux. It is shown that, according to the heat-flux formulation of hyperbolic
heat conduction, the heat flux density field can be determined by employing the analytical solution of a one-dimensional
problem. The distributions of the heat flux density and the temperature are obtained for a bar with a finite length and
with arbitrary time-evolutions of the heat flux on its surfaces. Special attention is devoted to a two-dimensional case,
i.e. that of a bar with insulated ends. In this case, plots of the temperature field at given instants of time are reported
and compared with those which correspond to a vanishing relaxation time. © 1998 Elsevier Science Ltd. All rights

reserved.
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Nomenclature

a; fori=1,2,3, dimensionless functions of £, # and A
defined by equation (39)

b dimensionless function of &, n and A defined by equa-
tion (44)

¢ specific heat

erfc complementary error function

f dimensionless function of w, n and A defined by equa-
tions (35) and (37)

F) fori=1,2,3, arbitrary dimensionless functions of
time

FY fori=1,2,3, arbitrary dimensionless functions of
time

g dimensionless function of &, 17 and A defined by equa-
tion (33)

I, modified Bessel function of first kind and order v

k thermal conductivity

L; fori=1,2,3, lengths of bar edges

%' inverse Laplace transform operator

n non-negative integer

* Corresponding author. Tel.: 00 39 51 6443295; Fax: 00 39
51 6443296; E-mail: antonio.barletta@mail.ing.unibo.it

N,.x the smallest non-negative integer such that equa-
tion (36) holds

p Laplace transform variable

q heat flux density

q; fori=1,2,3, components of q along the axes x,, x,,
X3

t time

T temperature

T, temperature forz=0

u internal energy per unit mass

U Heaviside’s unit step function

w  power generated per unit volume

X position vector

x; fori=1,2, 3, spatial coordinates

Y,Z dimensionless coordinates defined by equation
(42).

Greek symbols

o =k/(pc), thermal diffusivity

fp dimensionless parameter defined by equation (31)

n dimensionless time defined by equation (22)

0 dimensionless temperature defined by equation (42)
4 dummy integration variable employed in equation
(32)
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A dimensionless parameter defined by equation (22)

i dimensionless function of w, 1 and A defined by equa-
tions (46) and (48)

dimensionless coordinate defined by equation (22)
dimensionless parameter defined by equation (42)
mass density

aspect ratio defined by equation (42)

T thermal relaxation time

¢; fori=1, 2, 3, dimensionless heat fluxes defined by
equation (23)

¢ dimensionless function of w, n and A defined by equa-
tion (47)

¥  dimensionless time defined by equation (42)

Wy fori=1,2,3, dimensionless functions of 1 defined
by equation (23)

W fori=1,2, 3, dimensionless functions of # defined
by equation (23)

o dimensionless variable employed in equations (35),
(37) and (46)—(48).

Q™ [1] v

Superscripts and subscripts
~ Laplace transformed function
* dummy integration variable.

1. Introduction

In the last decades, several experiments have shown
that the classical theory of heat conduction in solids based
on Fourier’s law

q= —kVT (1)

may fail when unsteady processes with rapid changes of
the temperature and of the heat flux are involved. Indeed,
equation (1) when combined with the local energy bal-
ance equation

0
V'q-i—paitl:w 2)

and with the relation du = ¢dT leads, for a solid with
constant values of p, ¢ and k, to the differential equation

pcﬂw =kV:T+w. (3)
ot

Equation (3) is a parabolic partial-differential equation
and implies an infinite propagation speed of the tem-
perature signal. This property of Fourier’s theory con-
flicts with several experiments performed both at very
low temperatures, as for instance the experiment by Ack-
erman and Guyer in solid helium [1], and at room tem-
peratures, as the experiment by Kaminski [2] and that
by Mitra et al. [3]. In order to obtain a theory of heat
conduction compatible with a finite propagation speed
of thermal signals, Cattaneo [4, 5] and Vernotte [6, 7]

proposed a modification of Fourier’s law, which is now

well known as Cattaneo—Vernotte’s constitutive equation
0

a+3_ T )
ot

If equation (4) is combined with equation (2) and with the

relation du = ¢dT, one obtains for a solid with constant

values of p, ¢ and k,

2
pc(g—i—rﬂ):szT—l—w—l—r%. 5)
ot or? ot

Equation (5) is a hyperbolic partial-differential equation
and yields a finite value, | /o/7, for the propagation speed
of the temperature signals. Obviously, in the limit 7 — 0,
equation (5) tends to equation (3) and the propagation
speed /;/Lr tends to infinity.

Many solutions of equation (5) have been obtained in
several papers available in the literature. Most of them
analyze one-dimensional cases and deal either with plane
slabs or with semi-infinite media bounded by a plane
surface. A wide list of these papers can be found in the
review by Ozisik and Tzou [8]. The literature on one-
dimensional propagation of thermal waves in cylindrical
domains is less abundant [9-14].

Few papers analyze hyperbolic heat conduction in two
or three dimensions. To the authors” knowledge, all the
solutions available in the literature in more than one
dimension are obtained by employing numerical
methods. Yang [15] describes a high-resolution numerical
method for the analysis of hyperbolic heat conduction in
two-dimensional domains. Chen and Lin [16, 17] present
illustrative examples of thermal-wave propagation in two
dimensions. These authors solve equation (5) by the fol-
lowing numerical procedure. First, the Laplace transform
technique is employed to remove the time derivatives
from equation (5). Then, the discretized equation in the
transform domain is solved by the control volume
method.

In the present paper, an analytical expression of the
temperature field is obtained for a three-dimensional
problem of hyperbolic heat conduction. In particular,
the propagation of thermal waves in a finite bar with a
rectangular cross-section is analyzed in the case of
unsteady and uniform heat fluxes on the six boundary
surfaces. The heat-flux formulation results to be par-
ticularly convenient in this case. In fact, the solution
of the three-dimensional problem is easily obtained by
employing the solution of an auxiliary one-dimensional
problem. The latter is solved by means of the Laplace
transform technique. A detailed analysis is presented for
the special case of a bar with insulated ends.

2. The heat-flux formulation

In this section, the heat-flux formulation of hyperbolic
heat conduction is outlined. Then, it is shown that the
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three components of the heat flux density fulfil three
partial-differential equations which may be solved sep-
arately.

The heat-flux formulation of hyperbolic heat con-
duction based on Cattaneo—Vernotte’s constitutive equa-
tion is described in the paper by Frankel et al. [18]. This
formulation of hyperbolic heat conduction is based on
the partial-differential equation satisfied by the heat flux
density q

V(v-q) v = 9 4 9 6
AV(V-0) = V) =+ ©
Equation (6) is easily obtained by combining equation
(4) with equation (2) and with the relation du = ¢dT, for
a solid with constant values of p, ¢, k and .

In the following, it will be shown that, if Vx q = 0 for
t = 0, equation (6) can be expressed in a simpler form.
On account of the vector identity [19]

V(V-q) = Vq+Vx(Vxq) ™
equation (6) can be rewritten as
oq

8
e ®)

2
AV2q+V x (V x q)— V] = a—‘:ﬂ

If the thermal relaxation time t is nonzero, equation (4)
implies the relation

a 1/t _ kV r,r’rT 9
70 = — VD). )

As a consequence of equation (9), one obtains

Z (" Vxq) =0. (10)
ot

Therefore, V x q can be expressed as

Vxq(x, 1) =e "V xq(x,0) (11)

so that, if V x q is zero for ¢ = 0, it is zero for every ¢ > 0.
In this case, equation (8) yields

a a2
oAVq— V] = —a‘: +r ‘i;‘. (12)
o

Indeed, the constraint V x q = 0 for r = 0 is a restriction
not so severe as it seems, for the following reason.
Usually, the initial state of a non-stationary heat con-
duction problem is either a thermodynamic equilibrium
state or, at least, a steady state. In the former case, q(x, 0)
is zero and, as a consequence, is irrotational. In the latter
case, 0q(x,0)/0t is zero, so that for 1 = 0 equation (4)
coincides with equation (1). If equation (1) holds at r = 0
and k is a constant, q(x,0) is irrotational. It should be
pointed out that, unlike equation (6), equation (12) yields
no interaction between the components of . Indeed,
equation (12) can be split into the three scalar equations

[, ow]  dq, %q,
o ‘V q,— o | e T o (13)
i owl dq, q,
2 W99
o _V q> e T +1 o (14)
i ow| gy ¢y
2, YWY :
o ;V q3 o |~ T o (15)

In principle, equations (13)—(15) imply that the three
components ¢,, ¢, and ¢; are independent variables. How-
ever, an interaction between ¢,, ¢, and ¢; can be induced
by the boundary conditions. For instance, if the bound-
ary temperature is prescribed, the energy balance equa-
tion

oT

V'q—I—ch:w (16)
implies that a constraint on V - q is present at the bound-
ary. In this case, ¢,, ¢, and ¢; cannot be considered as
independent. On the other hand, if the boundary heat flux
is prescribed, ¢,, ¢, and ¢g; can be determined separately. A
three-dimensional problem of this kind will be analyzed
in the forthcoming section.

According to the heat-flux formulation of hyperbolic
heat conduction, when the heat flux density q has been
obtained by solving equations (13)—(15), the temperature
distribution can be evaluated by employing equation (16),
ie.

T(x, 1) = T(x,0)— ij V-qx, ) —w(x,£)]dr. (17

3. A three-dimensional problem

In this section, the heat-flux formulation is employed
in the analysis of hyperbolic heat conduction in a bar
with a rectangular cross section and with a finite length.

Let us consider a bar with a length L, and a rectangular
cross section with sides L, and L;. A drawing of the bar
and of the coordinate system is reported in Fig. 1. The
bar has constant values of the mass density p, of the
thermal conductivity k, of the specific heat ¢ and of the
thermal relaxation time t. Moreover, no internal heat
generation occurs within the bar, so that w = 0. Each
surface of the bar is subjected to a uniform and non-
stationary heat flux density, namely

¢1(0, x5, X3, 0) = qoF§V(1),  qi(Ly, X2, X5, 1) = —qoF{V(2)
(18)

qz(X],O,X3, t) = qu((JZ)(t)a %(X]»Lz, X3, t) = *%Ff)(f)
(19)
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%1

L

*2

Fig. 1. Drawing of the bar and of the coordinate system.

q3(x1,%2,0,0) = qoF$(1),  qs(x1, %2, Ls, 1) = —qoF1(0)
(20)

where the functions F§{(¢) and F(¢), for i =1, 2, 3, are
prescribed dimensionless functions of 7. The initial con-
ditions are

q(x17y29z35 0) = 0: T(xliylsth 0) = TO' (21)

On account of equation (4), equation (21) ensures that
dq/0t = 0 for t = 0. Moreover, equations (11) and (21)
imply that Vxq =0 at every instant of time, so that
equations (13)—(15) hold. Obviously, equations (13)—(15),
together with the boundary conditions (18)—(20) and the
initial condition (21), yield no interaction between ¢, ¢,
and ¢;. In other words, each of the components ¢,, ¢, and
¢ can be determined separately. On account of equations
(13)—(15) and (18)—(20), one can conclude that ¢, depends
only on x, and ¢, ¢, depends only on x, and ¢, ¢; depends
only on x; and ¢. Thus, each ¢, for i =1, 2, 3, is the
solution of a one-dimensional heat conduction problem.

4. An auxiliary one-dimensional problem

In this section, the distribution of the heat flux density
and the temperature field within the bar described in the
preceding section are obtained by means of an auxiliary
one-dimensional boundary value problem, which is
solved by the Laplace transform method.

Fori = 1,2, 3, let us define the dimensionless quantities

X; ot ot
P A 22

and the dimensionless functions

L?
q:| L&, a
i : o (Lin
PLENA) =———, YD) = FP (7)
9o o
woon = (%)) o

On account of equations (22) and (23), equations (13)—
(15) and (18)—(21) yield

a2 . . 2 .
o 06, )P

T 24

ogr  On on’ @4

¢0,n,A) =yQ(m), 1.0, A) = —yP0) (25)
0b(En. A

$(E,0,A) = 0, % —0. (26)

Equations (24)—(26) can be solved by the Laplace trans-
form method. The transform of ¢«(¢&,n, A) is given by

q;i(éﬁp’ A) = \[m eipﬂ(pbi(éa , A) d” (27)

0

On account of the properties of Laplace transforms [20],
equations (24) and (26) yield

9,
ae

= (p+AP)$: (28)
while equation (25) can be rewritten as

@(0.p. ) = ¥(p).  P(L.p. A) = —J(p). (29)

The solution of equations (28) and (29) can be expressed
as

. s sinh[B(1=&)] . sinh (5)
L& p, A) =Y (p) sinh (5) —y(p) sinh (5)

(30)
where
B=(p+Ap>)'". (1)

Then, on account of the convolution theorem for Laplace
transforms [20], equation (30) yields

"[dy(2)
[ ai?

C(SY/UN :J

0

(I=&n—74.A)

g

i eEn—1. A)} di (2)

where g(&, 5, A) is the inverse transform of the function

sinh (5¢)

erN= S

(33)
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As is shown in the Appendix, g(&, n, A) can be expressed
as

N,

max

g Ay =Y [fQn+1=En,N)—fQ2n+14E,1,M)]

n=0
(34
where, if A # 0, f(w,n,A) is given by

flw,n,A)=Umn— wﬂ) |:e—wf(2\/X)

e 2

®
+
2\/KJ1,\K /1/]’2—sz
x I, (% /n’z—w2A> dn} (35)

and N, is the smallest non-negative integer such that

No >%<i71+é>. (36)

On the other hand, if A = 0, f(w, 5, 0) is given by

f(@.17,0) = erfc< = > (37)
2/
while N, = + 0.
On account of equations (17), (22) and (23), the tem-
perature field for the three-dimensional case can be ex-
pressed as

PN IR R E L AN
To) =Ty =5 Jz L[“'(L;Lg’L;)d’ (38)
where, fori=1, 2, 3,
a i\s» 5A
ey = PG, (9)

To summarize, for any arbitrary choice of the dimen-
sionless functions F(r) and FY(f), with i = 1, 2, 3, the
temperature field within the bar can be determined by
employing equations (23), (32) and (34)—(39).

5. A bar with insulated ends

In this section, the expression of the temperature field
obtained for the three-dimensional conduction in a bar
with prescribed boundary heat fluxes is applied to a
special case: a bar with insulated ends.

Let us consider the bar described in the preceding sec-
tions and assume that the surfaces x, = 0 and x, = L, are
insulated, i.e. that Fi"(7) and F}"(¢) are zero. As a conse-

quence of equations (23), (32) and (39), one can conclude
that, in this case, both ¢,(¢, n, A) and a,(£, 5, A) are zero.
Therefore, equation (38) ensures that the temperature
does not depend on x;, so that the heat conduction is
two-dimensional. Indeed, if the ends are insulated, the
temperature distribution is the same which would occur
for a bar with an infinite length.

Let us assume that the same constant heat flux density
is prescribed on the non-insulated boundary surfaces,
namely

F(1) = FP(1) = FP(1) = F(1) = U(1). (40)
In this case, equation (32) yields, for i = 2, 3,

Let us define the dimensionless quantities

Y_x2 Z_x3 T
A a?
L, T—T,

c=—, 0=k . 42
L, qoL> (42)

Equations (38) and (42) yield
+olb(1=Z/a, /0>, E[c*)+b(Z]o,7/0% E[o*)]  (43)

where b(&, 5, A) is defined as

10g9(&E,n’, A
BEn. A) = J YN g

! 44

On account of equations (34), (35) and (37), the function
b(&,n, A) is given by

N

max

b(E A = ) [uQn+1—&n, N+ un+1+& 4, )]

(45)

where, if A # 0, the function u(w, 1, A) can be expressed
as

(@, A) = Ulp— /A /Ae &/

n
- J _(w,n’,A)dn’].  (46)
oV A

The function ¢@(w,n,A) employed in equation (46) is
defined as

4 /A _
o(w,n,A) = — %ﬁefwﬂ(zv’/\)
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- dr’. (47)

On the other hand, p(w, 1, 0) is given by

u(w,n,0) = Zﬁ e*“’z"‘(“’”—werfc( @ > (48)
Y 2 n

For arbitrarily chosen values of the dimensionless par-
ameters 2 and o, equations (43) and (45)—(48) allow one
to evaluate the dimensionless temperature field 0(Y, Z, y).

6. Discussion of the results

Figures 2-5 refer to a bar with insulated ends and with
L, = Ls,i.e. witho = 1. In particular, Figs 2 and 4 present
plots of the dimensionless temperature 6 as a function of
Y and Z, for E = 1. These plots refer to x = 0.25 and
x = 0.75, respectively. Figures 2 and 4 display the dis-
tribution of 6 in the region with 0 < Y < 0.5 and
0 < Z < 0.5. On account of the symmetry of the bar and
of the boundary conditions, the behaviour of 0 in the
whole section of the bar is easily inferred from Figs 2 and
4. Figure 2 shows that, when y = 0.25, the temperature
signal has not yet reached the internal region with
0.25< Y <0.75 and 0.25 < Z < 0.75. An interference
between the wavefronts generated on the boundary
planes Y =0 and Z =0 is present in the region with
0 < Y<0.25and 0 < Z < 0.25. In this region, the higher
values of 0 are caused by the overlap of the temperature

Fig. 2. Plot of the dimensionless temperature 0 as a function of
Yand Zfory =025 0=1and E = 1.
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T~~~ -~ T
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0
0 0.2 0.4 06 08 1
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Fig. 3. Plotsof f vs. Yat Z = 0 and at Z = 0.5 for x = 0.25 and
o = 1. The solid lines refer to E = 1, while the dashed lines refer
toE2=0.

3.5

0

Fig. 4. Plot of the dimensionless temperature 0 as a function of
Yand Zfory =0.75,0 = land E = 1.

signals which propagate in the Y-direction and in the Z-
direction.

Figure 3 refers to y = 0.25 and presents a comparison
between the behaviour of  for 2 = 1 and for E = 0, both
at Z = 0 and at Z = 0.5. The plots for E = 1 display two
discontinuities of # at Y = 0.25 and at Y = 0.75. Indeed,
since the propagation speed of thermal signals is \/E,
the distance spanned by the thermal wave in a dimen-
sionless time 0.25 is given by 0.25L§/\/E; if E =1, this
distance is equal to 0.25L,. Hence, for x = 0.25 and
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3.2 S o -

28

2.6\ Z=0

3.5 4 ‘

3.4

3.3

3.2

Fig. 5. Plotsof O vs. Yat Z = 0 and at Z = 0.5 for y = 0.75 and
o = 1. The solid lines refer to E = 1, while the dashed lines refer
to E =

Z = 0, no thermal signal travelling in the Y-direction has
reached the region 0.25 < Y < 0.75. For x = 0.25 and
Z = 0.5, no thermal signal travelling either in the Y-
direction or in the Z-direction has reached the region
0.25 < Y <0.75.

Figure 4 refers to x = 0.75 and E = 1. At the dimen-
sionless time 0.75, an interference between the tem-
perature wavefronts generated at the four boundary
planes Y=0, Y=1, Z=0 and Z =1 occurs in the
internal region with 025<Y<0.75 and
0.25 < Z < 0.75. In this region, the thermal signals com-
ing from the four boundary planes overlap, so that higher
temperatures occur. Indeed, for y = 0.75, the tem-
perature signals coming from the boundary have already
reached the central axis of the bar, i.e. the position
Y=0.5 and Z=0.5, and are travelling towards the
boundary.

In Fig. 5, the behaviour of 0 for E = 1 is compared
with the behaviour for 2 = 0, at the planes Z = 0 and
Z = 0.5 for y = 0.75. This figure shows that, for E = 1
and Z = 0, an interference between the temperature wav-
efronts travelling in the Y-direction and that generated
at Z=0 occurs in the region 0.25 < Y <0.75. At
Z = 0.5, an interference between the thermal waves trav-
elling in the Y-direction and those travelling in the Z-
direction occurs in the region 0.25 < Y < 0.75.

Figures 6-11 refer to a bar with insulated ends and
with L; = 2L,, i.e. with ¢ = 2. In particular, Figs 6 and

Fig. 6. Plot of the dimensionless temperature 6 as a function of
Yand Zfory =025, 0 =2and E = 1.
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Fig. 7. Plots of @ vs. Yat Z =0 and at Z =1 for y = 0.25 and
o = 2. The solid lines refer to Z = 1, while the dashed lines refer
toE =0.

9 present plots of the dimensionless temperature 0 as a
function of Y and Z for E = 1, which refer to y = 0.25
and y = 0.75, respectively.

Figure 6 displays an overlap between the temperature
waves generated at the planes ¥ =0 and Z = 0, in the
region with 0 < ¥ < 0.25 and 0 < Z < 0.25. Moreover,
the temperature signal has not yet reached the internal
region with 0.25 < Y < 0.75 and 0.25 < Z < 1.75. Fig-
ures 7 and 8 refer to x = 0.25 and compare the dis-
tributions of 0 for E =1 and for E = 0 on the planes
Z=0,Z=1,Y=0and Y =0.5.
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Fig. 10. Plots of O vs. Yat Z =0 and at Z = 1 for y = 0.75 and
o = 2. The solid lines refer to Z = 1, while the dashed lines refer

Fig. 8. Plotsof § vs. Zat Y =0and at Y = 0.5 for y = 0.25 and

o = 2. The solid lines refer to Z = 1, while the dashed lines refer
toE =

Fig. 9. Plot of the dimensionless temperature 0 as a function of
Yand Zfory =0.75,0 =2and E = 1.

Figure 9 refers to E = 1 and y = 0.75. An analysis of
this figure shows that four regions can be identified:
(a) the region with 0 < Y <0.25 and 0<Z<0.75;
(b) the region with 0.25 < Y < 0.5and 0 < Z < 0.75; (¢)
the region with 0 < Y < 0.25 and 0.75 < Z < 1; (d) the
region with 0.25 < Y < 0.5 and 0.75< Z < 1. In the
region (a), an interference between the wavefronts com-
ing from the planes ¥ = 0 and Z = 0 is present. In the
region (b), an interference between the wavefronts com-
ing from the planes Y =0, Y =1 and Z = 0 occurs. In
the region (c), only the temperature signals coming from
the plane Y = 0 are present. Finally, in the region (d), an

to E =0.

Fig. 11. Plots of § vs. Z at Y =0 and at Y = 0.5 for 3y =0.75
and ¢ = 2. The solid lines refer to Z = 1, while the dashed lines
refer to 2 = 0.
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interference between the wavefronts coming from the
planes Y =0 and Y = 1 occurs. Figures 10 and 11 refer
to y = 0.75 and compare the distributions of 0 for E = 1
and for E =0 on the planes Z=0, Z=1, Y =0 and
Y =0.5. In Figs 10 and 11, the interference patterns
between the wavefronts, which have been described in
the analysis of Fig. 9, can be easily identified.

In Fig. 12, plots of 6 vs. y on the central axis of the
bar, i.e. at the position Y = 0.5and Z = ¢/2, are reported
for both E = 1 and E = 0. These plots refer to the interval
0 < x < 2 and to three different values of the aspect ratio:
g =1,0 =2and ¢ = 4. In particular, Fig. 12 shows that
the plots for E = 1 present discontinuities, which can be
explained as follows.

If ¢ =1, 0 undergoes two step changes: for y = 0.5
and for y = 1.5. The discontinuity for y = 0.5 is due to
the simultaneous arrival of the wavefronts coming from
the four boundary planes, while that for y = 1.5 is due
to the arrival of the wavefronts which have been reflected
from the boundary planes.

If ¢ = 2, 0 undergoes three step changes: for y = 0.5,
for y =1 and for x = 1.5. The simultaneous arrival of
the wavefronts generated at the boundary planes ¥ =0
and Y = 1 causes the first discontinuity, for x = 0.5. The
arrival of the wavefronts generated at the boundary
planes Z = 0 and Z = 2 is delayed and occurs for y = 1,
in correspondence of the second discontinuity. The third
step change, i.e. that for y = 1.5, is due to the arrival of

Fig. 12. Plotsof @ vs.yat Y=0.5and Z =¢g/2forc = 1,06 =2
and ¢ = 4. The upper frame refers to E = 1, while the lower
frame refers to E = 0.

the wavefronts reflected by the boundary planes ¥ =0
and Y = 1.

Finally, if ¢ = 4, 0 undergoes two step changes: for
x = 0.5 and for y = 1.5. In the interval 0 < y <2 and
for this value of the aspect ratio, no thermal signal which
propagates in the Z-direction reaches the central axis, i.e.
the position Y = 0.5 and Z = 2. As a consequence, in the
interval 0 < y < 2, the time-evolution of 6 is influenced
only by the thermal waves generated at the boundary
planes Y = 0 and Y = 1. The arrival of the thermal waves
coming from these boundary planes causes the dis-
continuity for y = 0.5, while the arrival of the waves
reflected from these planes causes the discontinuity for
x=1.5.

An interesting comparison can be made between the
behaviour of the temperature field discussed in this sec-
tion and the behaviour of the temperature field in an
infinite solid cylinder whose boundary heat flux under-
goes a step change [13]. In both cases, an internal propa-
gation of hyperbolic thermal waves occurs. However, in
the case of a solid cylinder, a step change of the boundary
heat flux yields a singularity of the temperature field
whenever the wavefront created or reflected from the
boundary reaches the axis of the cylinder [13]. No such
behaviour is detected in the case of a bar with a rect-
angular cross-section. Indeed, the cylinder with a cir-
cular cross-section represents a special geometry, i.e. the
axis of the cylinder acts as a focus for the thermal waves
coming from the boundary. When a thermal wave with
a sharp wavefront reaches the axis of the cylinder, the
sharp wavefront focuses on the axis and a singularity
occurs. On the contrary, the heat conduction problem
examined in the present paper deals with a cylinder hav-
ing a rectangular cross-section. In this geometry, no point
acts as a focus for the thermal waves. As a consequence,
the interference between the thermal waves does not yield
singularities, even if sharp wavefronts are involved.

7. Conclusions

The hyperbolic heat conduction in a solid bar with a
rectangular cross-section and an unsteady boundary heat
flux has been analyzed. The heat-flux formulation has
been employed. It has been proved that, if a uniform heat
flux is prescribed on each boundary plane, the com-
ponents of the heat flux density can be considered as
independent variables. Moreover, each of these com-
ponents can be determined as the solution of a suitable
one-dimensional heat conduction problem. An analytical
solution of this one-dimensional problem has been
obtained by the Laplace transform method. Then, the
temperature field for the three-dimensional propagation
of thermal waves induced by arbitrary and unsteady heat
fluxes on the six boundary planes has been obtained
by employing the local energy-balance equation. Special
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attention has been devoted to the case of a bar with
insulated end-sections and such that the other boundary
planes undergo a step-change of the heat flux density.
The interference patterns of the thermal waves have been
analyzed for some aspect ratios of the bar cross-section.
Finally, a comparison has been performed with the
propagation of thermal waves in a solid cylinder having
a circular cross-section and subjected to a step-change of
the boundary heat flux, studied in ref. [13]. The major
difference between the two cases has been emphasized.
The circular cross-section causes the axis of the cylinder
to be a focus for the thermal waves, while no focus exists
in the case of a rectangular cross-section. As a conse-
quence, while thermal waves with sharp wavefronts yield
singularities of the temperature field in the case of the
circular cylinder, no singularity occurs in the case of the
bar with a rectangular cross-section.

Appendix
Function g(&, p, A) can be expressed as
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On account of equation (Al), the inverse transform
g(&,n, A) is given by

R

n=0 p

e—(271+ 1+&p
5

where % ! is the inverse Laplace transform operator. As
it can be deduced by employing the tables of Laplace
transforms [21], if A # 0, the following relation holds
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where U is Heaviside’s unit step function and 7, is the

modified Bessel function of first kind and order v. On the
other hand, in the case A = 0, one obtains [21]

oz

where erfc is the complementary error function. On
account of equations (A3) and (A4), equation (A2) can
be rewritten as

—o\/p
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‘ 7705371
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If A # 0, the sum which appears in equations (AS5) is not
infinite. In fact, as it can be inferred from equations (A3)
and (A5), the non-vanishing terms in equation (AS) fulfil
the inequality

n<%<i—l+é>. (A6)

JA

Therefore, if N, is the smallest non-negative integer
such that

Lin

equation (AS5) can be rewritten as

N

max

n=0
(A8)

Equations (A7) and (AS8) imply that N,, =0 and
g(&,n,A) =0 when n < (1=8A". If A =0, equation
(A8) can still be employed provided that N, = + c0.
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